Likelihood Based Finite Sample Inference for Singly Imputed Synthetic Data Under the Multivariate Normal and Multiple Linear Regression Models

نویسندگان

  • Martin Klein
  • Bimal Sinha
چکیده

In this paper we develop likelihood-based finite sample inference based on singly imputed partially synthetic data, when the original data follow either a multivariate normal or a multiple linear regression model. We assume that the synthetic data are generated by using the plug-in sampling method, where unknown parameters in the data model are set equal to observed values of their point estimators based on the original data, and synthetic data are drawn from this estimated version of the model. Empirical studies are presented to show that the proposed methods do indeed perform as the theory predicts, and to compare the proposed methods for singly imputed synthetic data with the combining rules that are used to analyze multiply imputed partially synthetic data. Some theoretical comparisons between singly and multiply imputed partially synthetic data inference are also provided. A data analysis example and disclosure risk evaluation of singly and multiply imputed partially synthetic data is presented based on public use data from the Current Population Survey. We discuss the specific conditions under which the proposed methodology will yield valid inference, and evaluate the performance of the methodology when certain conditions do not hold. We outline some ways to extend the proposed methodology for certain scenarios where the required set of conditions do not hold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple imputation and other resampling schemes for imputing missing observations

The problem of imputing missing observations under the linear regression model is considered. It is assumed that observations are missing at random and all the observations on the auxiliary or independent variables are available. Estimates of the regression parameters based on singly and multiply imputed values are given. Jackknife as well as bootstrap estimates of the variance of the singly im...

متن کامل

Imputed Empirical Likelihood for Varying Coefficient Models with Missing Covariates

The empirical likelihood-based inference for varying coefficient models with missing covariates is investigated. An imputed empirical likelihood ratio function for the coefficient functions is proposed, and it is shown that iis limiting distribution is standard chi-squared. Then the corresponding confidence intervals for the regression coefficients are constructed. Some simulations show that th...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Empirical likelihood for generalized linear models with longitudinal data

In this paper, empirical likelihood-based inference for longitudinal data within the framework of generalized linear model is investigated. The proposed procedure takes into account the within-subject correlation without involving direct estimation of nuisance parameters in the correlation matrix and retains optimal even if the working correlation structure is misspecified. The proposed approac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016